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Recent advances in the understanding of solid-solution hardening (SSH) of crystalline materials, 
as well as some basic early papers are briefly reviewed. This survey shows that models of SSH 
based on the concept of a frictional drag on dislocations migrating through fields of point-like 
obstacles, whether randomly dispersed or clustered, do not encompass the principal features of 
SSH, e.g. the temperature dependence of the yield stress, the stress and temperature dependences 
of the activation volume, and the phenomenon of stress equivalence. However, a model based on 
the nucleation of slip, involving the breakaway of dislocation segments from several pinning 
points, formulated in closed form, is shown to account satisfactorily for the principal observations. 

1. Introduction 
The increase of the flow stress of a metal due to the 
presence of dispersed foreign atoms is referred to as 
solid-solution hardening (SSH). Two trends can be 
observed in the evolution of modern theories of SSH. 
In the first, typified by the classical paper of Mott  and 
Nabarro [1], mutually non-interacting dislocations 
move under the applied shear stress piecewise through 
random dispersions of localized, point-like, attractive 
and repulsive barriers (Fig. 1); the solute concentra- 
tion, c, is assumed to be high enough to involve several 
solute atoms in the advance of a dislocation segment, 
i.e. the models are collective. Suzuki [2] referred to 
these models as the friction type. They differ from 
models of the breakaway type, exemplified, for in- 
stance, by that of Friedel [33, in which the low solute 
concentration facilitates breakaway from individual 
pinners. Types of both models, proposed in the period 
1948-1978 [e.g. 1, 3-19] were critically reviewed by 
Butt and Feltham [203 in 1978. Since then a number 
of papers on new developments in this field have 
appeared [e.g. 21-70]; these, as well as some basic 
early papers, will be referred to in this review. 

2. Migrat ion of dislocations through 
random dispersions of solute atoms 

2.1. The model of Mott and Nabarro 
In their pioneering work on SSH published in 1948, 
Mott and Nabarro I l l  considered that on replacing 
some atoms of the solvent matrix by solute atoms, 
either larger or smaller than those of the solvent, the 
resulting local stresses led to interaction of the solute 
atoms with dislocations; the latter were regarded as 
akin to elastic strings with limited flexibility. The 
non-uniform internal stress field was postulated to 

vary spatially about a zero mean value with typical 
amplitude ~i and wavelength X; the latter was taken as 
equal to bc-  1/3, the mean solute spacing in the volume 
of the crystal. The solute atoms were assumed to be so 
closely spaced that the internal stresses could not force 
dislocations, which due to their line tension were not 
flexible enough, to undulate with the wavelength of 
this stress field. Thus each dislocation rode through 
the stress-field piecewise (Fig. 1). Although, in view of 
the alternating signs of the internal stress, the average 
force on a dislocation would, in general, be close to 
zero, local deviations would permit line elements 
of the dislocation, each of length L>>X, to move 
almost independently of the neighbouring segments 
flanking it. 

Further, it was assumed that a dislocation segment 
of length L >> X, moving forward as an independent 
unit, is composed of L/X elements, on each of which 
the internal stress exerts a force of magnitude zibX, but 
of random sign. The statistical resultant of these ran- 
dom forces acting on the length L is "qbX(L/X) 1/2, and 
flow will occur when the applied force r bL, experi- 
enced by the dislocation due to the external stress r, is 
balanced by the former, so that then 

Z = "r L = '~ i (~ , /L )  1/2 (1) 

The dislocation is effectively flexible under the mean 
internal stress zL, if L is so large that the radius of 
curvature, PL, of the dislocation is about equal to L, 
i.e. if 

L = 9L = E/(ZLb) (2) 

where E( = �89 2) is the line energy per unit length of 
dislocation, and G the shear modulus. The magnitude 
of q at the dislocation is estimated from the local 
volume average of the shear stress due to a single 
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Direction of slip 
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~G = (1/G)(dG/dc),  between solute and solvent atoms. 
Thermal activation of dislocation movement was not 
allowed for in the theory, which was thus confined to 
SSH at low temperatures. 
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Figure 1 A wavy dislocation in the model of Mott and Nabarro. 
Arrows indicate the direction of the force which the internal sti:ess 
exerts on the dislocation in the slip plane [1]. 

solute atom, and is given by 

fi (G~b b3/r 3)4nr 2 dr 

- - G % c ( l n c )  (3) 

= f)4rcr2d r 

Where ab= (1/b)(db/dc) is the size-misfit factor and 
c the solute concentration. The critical shear stress, 
obtained from Equations (1-3), is then found to be 

z = a ~  c 5/3 (In c) 2 (4) 

Although the theory is conceptually attractive, the 
result, i.e. the concentration dependence of the yield 
stress in shear implied by Equation 4, is not confirmed 
experimentally. In fact, one of the weaknesses of this 
theory is its applicability only to dislocations whose 
stress fields arise from volume strains, so that pure 
screw dislocations would not be interacting signific- 
antly with the solute, and would thus be able to move 
fl'eely. Moreover, experiment shows (e.g. [4, 5]) that 
solute atoms with valencies differing markedly from 
those of the solvent have a greater hardening effect for 
a given size factor, eb, than those where valencies differ 
tess from that of the solvent. Hence it would seem that 
in interpreting the hardness of alloys valency must 
also be taken into account, in addition to size misfit. 
However, as was pointed out by Fleischer [4], there 
remains no valency effect to be accounted for when 
allowance is made for the modulus mismatch, 
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2.2. The mode l  of k a b u s c h  
Labusch [11] re-examined the alloy-hardening theory 
of Mott and Nabarro [1], and pointed out that, except 
in rather dilute solutions, solute atoms could not be 
assumed to be uniformly dispersed; groups of relat- 
ively closely spaced solute atoms would also exist, so 
that spatial ftuctaations in obstacle density would 
occur in the crystal. Individual groups would act as 
single "effective" obstacles of strength exceeding that 
of isolated solute atoms, but less than the sum of their 
separate strengths, because, due to its line tension, 
a piece of dislocation would not in general be 
sufficientty flexible to make full contact with all the 
individual solute atoms comprising such a cluster. 
Nevertheless, for simplicity, the strength of an 
"effective" cluster obstacle was taken as being equal to 
the sum of the strength of individual solute atoms in 
the cluster. Its range of interaction, defined by 
W = Um/fm , where fm is the maximum obstacle-dislo- 
cation interaction force and L~, the obstacle-to-dislo- 
cation interaction energy, was still taken to be of the 
same order as that ascribed to a single solute atom. 

In contrast to the model of Mott and Nabarro [1], 
in which a dislocation has to ride over the internal 
stress field (Fig. 1) of dispersed "weak" obstacles, the 
dislocation was now assumed to interact strongly with 
the more localised "effective" obstacles, because the 
relatively intense stress field of clustered obstacles was 
assumed to lead to a closer adaptation of the disloca- 
tion to the cluster than to a similar number of indi- 
vidual, dispersed, solute atoms. Labusch's theory, 
essentially a development of that of Mott and 
Nabarro, is also of the collective type, for several 
solute atoms are again involved in the elementary 
breakaway process. Apart from the cluster concept, 
Labusch modified some "statistical" assumptions in 
the theory of Mott and Nabarro substituting more 
plausible ones; as a result he obtained the often ob- 
served e.g. [16, 30] c 2/3 relation for the concentration 
dependence of the flow stress in shear, replacing Equa- 
tion 4 with 

The dependence 
considered. 

The constant, A, in Equation 5 depends on the form 
of the force-distance relation 

f ( y )  = fm(2y /w) / [1  + (y/w)2] 2 

assumed for the interaction between a dislocation and 
the obstacle located at a distance y from it. Here the 
maximum interaction force is fm = (Gb2/120)eL, the 
misfit parameter, eL, being given by a linear combina- 
tion of the size and modulus factors: eL= 
[ (aG)  2 -~- ( ~ e b ) 2 ]  I/a,  where e ;  = ~, / [1  + �89 and 
the constant ~ is equal to + 16 for edge dislocations. 

A 
= ~ ( f ~ c 2 w / E )  1/3 (5) 

of ~ on temperature was not 



The positive and negative values of (z are appropriate 
for edge dislocations of corresponding signs. 

unsolved the problem of the temperature dependence 
of the yield stress. 

2.3. Nabarro ' s  t heo ry  
In a later paper Nabarro [18] briefly surveyed the 
subject of SSH, and then re-examined the basic fea- 
tures of the problem, i.e. the passage of a dislocation 
over a glide plane containing a concentration of ran- 
domly dispersed obstacles (T ~ 0 K). These were rep- 
resented by potential wells of a given width 2w (Fig. 2), 
each obstacle exerting an attractive force of maximum 
value fro on the dislocation. For a solid solution suffi- 
ciently dilute to enable arcs of dislocations to break 
away from isolated pinning points individually, i.e. in 
the "Friedel limit" in which, according to Arsenault 
and Cadman [71], the solute content is less than 
100-200 p.p.m., he obtained for the critical resolved 
shear stress (CRSS), "c, the relation 

"c = ~ ( f Z  c/2S/ZE)i/2 (6) 

However, at relatively high concentrations the solute 
atoms will be rather closely spaced along a disloca- 
tion, and the breakaway-and-repinning process will 
involve a segment of dislocation containing many 
obstacles. For that case, he derived 

1 
z = ~ (f4mcZw/E) x/3 (7) 

Nabarro's model [18] may be regarded as basically 
a development of Labusch's [11] which, in turn, is 
similar in essence to the classical model of the passage 
of a dislocation through a random dispersion of ob- 
stacles advanced by Mott and Nabarro [1], discussed 
earlier. However, as in that paper [1], Nabarro [18] 
does not consider clustering, as envisaged by Labusch 
[11], as an essential feature or as a prerequisite of 
SSH. In its functional form Equation 7 agrees with 
Labusch's (Equation 5); the c 2/3 dependence of the 
CRSS appearing in both is frequently observed in 
solid solutions at low temperatures but they leave 
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Figure 2 A potential well composed of parabolic arcs, representing 
the interaction between a dislocation and an obstacle, and the 
corresponding force-distance curve [18]. 

2.4 Thermal  effects  
Reference to Fig. 3 shows that, excepting the 
anomalies in face-centred cubic (f.c.c.) metals and 
alloys usually observed at temperatures below 
about 70 K (curves b-d), the yield stress of metallic 
solid solutions is in general found to decrease with 
increasing temperature up to a certain temperature 
Tp ~: �89 Tmelt (curve a), e.g. 400 K in binary copper 
alloys; at higher temperatures the yield stress is almost 
temperature independent, and a plateau in the yield 
stress versus temperature relation is generally 
observed, indicative of diffusional forms of thermal 
recovery. 

Labusch et al. [12] attempted to incorporate ther- 
mal effects into the earlier theory [11], mainly to 
explain the occurrence of the plateau. Thermal activa- 
tion was assumed to assist dislocation segments to 
surmount the pinning obstacles. A typical interaction- 
force profile of the dislocation, taken from their paper, 
is shown in Fig. 4. With this, a dislocation approach- 
ing a repulsive obstacle from the left would lag behind 
the average position of the dislocation segment at 
points just in front of the obstacle (Fig. 5), while it 
would be ahead of the mean position in regions rela- 
tively far from the obstacle. Beyond Yl (l;) (Fig. 4) no 
stable position exists, and the dislocation moves be- 
yond Y2 (l~). Thermal activation is possible only in the 
two intervals Yl (lo) < y ~< Yl (1o) and Y2 (10) < Y ~< 
Yz (lo). The activation energies of forward and back- 
ward jumps between Yl (1) and Y2 (I) are E+ and E_, 
respectively, as shown in Fig. 6. Thermal activation of 
forward jumps results in a decrease of the population 
at Yl, but an increase arises due to backward jumps 
from Yz. At temperatures lower than that of the pla- 
teau (Fig. 3), mostly forward jumps occur, while at 
high temperatures, i.e. corresponding to the plateau, 
the probabilities of forward and backward jumps be- 
come nearly equal for most of the effective obstacles; 
dislocation movement is then of the Brownian type, 
i.e. they diffuse across the obstacles with an average 
drift velocity. The CRSS at a given temperature is then 
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Figure 3 The temperature dependence of the yield stress of solid 
solutions (schematic) [47]. 
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Figure 4 Force distance relation for an obstacle in the slip plane, and the graphical determination, by the straight line of slope l/G(0), of the 
equilibrium positions, e g. ).,~ (10), Ya (lo), of a dislocation with mean position in the y-direction at lo (or at l, l' o ). Shaded areas measure the work 
done in moving this dislocation between various positions [12]. 

evaluated as the stress required to "drive" a single 
dislocation with a prescribed mean velocity is. This 
picture is severely simplified compared with that ob- 
served by transmission electron microscopy (TEM). 
For example, the velocity of a single dislocation, ob- 
served by TEM during in situ creep deformation of 
specimens of Al-lat% Mg alloy at a tensile stress of 
7.6MPa at 573K, can vary over several orders of 
magnitude, and this is particularly noticeable with 
dislocations across sub-boundary networks [72]. 
Also, as Strunin [73] commented, the macroscopic 
yield strength of an alloy crystal cannot be equated 
simply to the external stress necessary to lead to 
a given mean velocity of the dislocations, because as 
dislocation multiplication proceeds, the mutual inter- 
action of dislocations should be taken into account in 
deriving values of macrosc0pic-flow parameters of the 
solution-hardened materials, i.e. one is dealing with 
a process involving stochastic interactions. The ex- 
pression for the yield stress obtained by Labusch et al. 

[12] is 

1 4 c  2 "c = ~ (fm w/E) 1/3 4(•o,C0) (8) 

where 0 o is a dimensionless "reduced" temperature 
(0o = constant x T) and Co a "reduced dimensionless 
velocity" of a dislocation (Co = constant x f). The frac- 
tion-term has the same significance as in Equation 5, 
to which it "reduces" as T-~  OK, when, also, 
4(00, co) - *  A. The 4-term decreased with increasing 
T. According to Equation 8, the z / T  curve levels out to 
a plateau at temperatures where, for a given rate of 
deformation, the frequency of back jumps of disloca- 
tions become comparable with that of forward ones. 

The stress level given by Equation 8, i.e. the height 
of the plateau, is rather sensitive to the velocity of the 

dislocations; experiment shows that the plateau level 
varies but inappreciably with the strain rate to which 
the crystal is subjected [74, 75]. It is impossible to 
assume a priori a direct relation between dislocation 
velocity and the strain rate at which the crystal flows; 
thus, the question of the validity of their theory re- 
mains, at best, open. With a stochastic interpretation 
of the creep processes occurring in the plateau region 
of temperatures, the assumption that a relation for the 
strain rate in shear of the type ~ oc e x p ( - u * / k T )  was 
applicable and that the most probable heights of en- 
ergy barriers, u*, determining the rate of plastic flow 
were given by u* ~ mkT,  with m-values in the range 
25 +_ 2.3 (e.g. [37]) could explain the observed, rela- 
tively low dependence of the strain rate on temper- 
ature, for ~ would then be nearly independent of T. 
Also, the level of the plateau stress could be influenced 
by age hardening of the crystal, an effect not allowed 
for in the theory. The c z/3 dependence of the CRSS, 
indicated by Equation8, and already deduced 
(Equation 5), is often observed at the plateau temper- 
ature, e.g. [76, 77]. In fact, as 4 # 4 (c) (Equation 8), it 
should hold for any T; but this is not, in general, found 
to be the case [9, 62, 74, 75]. The c 2/3 dependence of 
the yield stress also appears in Equation 5, which 
holds only as T ~ 0 K, and does not, as such, serve as 
corroboration of the validity of the assumed processes 
of thermal activation, subsumed within 4(00, co) in 
Equation 8. 

2.5. Stress  equ iva lence  
A rather critical test of the viability of any theory of 
SSH is the correct description of the CRSS, ~(c, T), as 
well as of the activation volume v(c, T,z) and, inter 
alia its explanation of the well-established observation 
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Figure 5 Equilibrium posiUons of a dislocation moving from 
Yl --* Y2 near an obstacle located at the origin [12]. 
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Figure 6 Energy profiles of a dislocation moving along the 
y-direction between equilibrium positions y~, Y2, for various mean 
positions, l, of the dislocation. E+ and E_ are the activation energies 
for forward and backward movements, respectively [12]. 

the observed and the theoretically expected temper- 
ature dependences of the flow stress [22]. In the 
models referred to, the length of the dislocation seg- 
ment involved in the unit activation process and the 
CRSS at 0 K, are governed by the parameters cf  2 and 
w (see Equations 5-8), wherefm, as before, is the max- 
imum force of interaction between a solute atom and 
a dislocation, and w is the range of this force. The 
parameters cf 2 and w appear as a ratio in the expres- 
sion for the length of dislocation segment, and as 
a product in that for the CRSS as T --, 0 K [21]. Thus 
two solid solutions of different solutes in a given 
solvent metal will have the same values of to (CRSS at 
OK) if (Cf2m)l = (Cf2m)2 and wl = w2. (This is analog- 
ous to the stress-equivalence criteria of the nucleation 
theory of SSH, to be discussed in Section 3). However, 
if the low-temperature anomaly occurs, then two solid 
solutions with the same respective values of Cf2m and 
w will not necessarily be stress equivalent in the low- 
temperature z/T-anomaly regions unless a further cri- 
terion is also met; we shall refer to it in Section 3.6. 

Similarly, the stress dependence of the activation 
volume in copper-and silver-based alloys at T ---, 0 K, 
as derived by Nabarro [21], does not correlate with 
that observed at 78 and 298 K by Basinski et al. [78], 
Nabarro's theoretical value of the exponent p in the 
relation v oc t -P  is 1 in the "Labusch regime", where 
(w/b)(2cE/fm) 1/2 > 1, i.e. one has concentrated solid 
solutions and weak obstacles. Again, in the "Friedel 
limit", where (w/b)(2cE/fm) 1/2 < 1, i.e. dilute solutions 
and strong barriers, he finds p = 2. The corresponding 
observed values are, however, 2-1 for copper alloys, 
and 2 for silver alloys in the Labusch regime; the data 
are equivocal for the Friedel limit. Also, the abrupt 
vertical step expected by Nabarro [21] in the theoret- 
ical vo/to curve at rather high stresses, due to a change 
from a regime in which the two partials of a disso- 
ciated dislocation move in a coordinated manner to 
a regime in which the partials move independently, is 
not observed experimentally [78, 79]. 

Nabarro [22] later derived a power law for 
the stress dependence of the activation volume 
(vooc t o  ;/3), which yielded a better fit in the Labusch 
regime than the earlier one (Vo oc t o  1/2). However, the 
theoretical value of Av = v (298) -  v(78) due to the 
change in temperature (298~-~78 K) at a given stress 
level, was found to be smaller than the theoretical one 
by a factor of about three in the case of silver-based 
alloys, and was even negative for copper-based alloys. 
As remarked by Nabarro [22], this suggests that the 
Labusch-Nabarro models referred to did not account 
adequately for the temperature dependences of the 
CRSS and of the activation volume. 

of stress equivalence (e.g. [27, 30, 33, 40, 78]), i.e. the 
overlap of the t / T  curves of two solid solutions with 
the same base but different types and concentrations 
of solutes. In his papers, Nabarro [21-23] has sugges- 
ted that stress equivalence of SSH is in part explicable 
on the basis of the versions of the SSH models of 
Labusch [11] and Nabarro [18] advanced in the 
1970s, although there are clear discrepancies between 

2.6. Groups of pinners 
In an interpretation of the t / T  and related v / T  data 
appertaining to copper single crystals alloyed with 
either manganese (0.4-7.6at %) or germanium 
(0.5-3.3 at %), Wille et al. [25] postulated a discrete- 
barrier model for the onset of yielding, which com- 
prised a field of point-like barriers randomly 
distributed over the slip planes, with a spectrum of 
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strengths. They used a Cottrell-Bilby potential of in- 
teraction of dislocation with single point-barriers, as- 
suming it to also be applicable to barriers consisting of 
clusters of solute atoms. Such clusters, e.g. doublets, 
triplets etc, rather than individual solute atoms, play 
a central role as effective pinners in the model. Using 
the Fleischer-Friedel expression [3-5] for the force 
necessary to move a dislocation across a dilute field of 
statistically distributed barriers, they deduced that the 
effective-barrier concentration was less by up to two 
orders of magnitude than that of the individual man- 
ganese or germanium atoms on the dislocations. 
These low concentrations of the effective barriers were 
taken by them as justification for the use of concepts 
embodied in Friedel's treatment of SSH [3] applicable 
only to relatively dilute solid solutions. However, that 
model, involving unpinning from single solute atoms 
in dilute alloys, presupposes weak obstacles; and, 
hence, it presupposes yielding at low stresses, so that 
its use with relatively concentrated alloys, where pin- 
ners (solute atoms) on dislocations would be but a few 
interatomic spacings apart, seems hard to accept. In 
fact, computer simulation of thermally activated dislo- 
cation motion (reviewed, for example, by Arsenault 
and Cadman [71]) showed that with an average dislo- 
cation velocity of about 10 lams -1, and weak ob- 
stacles (i.e. the angle between the dislocation arms at 
the point obstacle being taken as 159 ~ Friedel's 
model would be expected to cease to hold at concen- 
trations of single random barriers in excess of about 
150 p.p.m., implying a spacing of about 100 lattice 
spacings between point barriers on dislocations. Also, 
it is difficult to accept that the pinning of dislocations 
by isolated solute atoms dispersed between the clus- 
ters can be ignored from the point of view of SSH, 
even though the clusters are assumed to be more 
strongly bound to the dislocations than the individual 
point defects [25]. Arsenault and Cadman [71], in 
a study of the joint effect of randomly distributed 
barriers of two different strengths on the thermally 
activated motion of dislocation by computer simula- 
tion, found a synergetic effect resulting from coupling 
between the weak and strong barriers, such that the 

activation energy necessary to maintain the disloca- 
tion velocity in the presence of the weaker pinners in 
the binary alloy was increased to a value exceeding 
that for just strong barriers. 

2.7. Recen t  c o m p u t e r  s imula t ion  
In Labusch's recent treatment by computer simulation 
[24] of the glide of a "vibrating-string" dislocation in 
solid solutions allowance is made, in addition to stres- 
ses due to dispersed solute atoms, for fluctuating ther- 
mal stresses which, for the purpose of computer 
simulation, are represented by point forces acting on 
the dislocation on a fine space-time grid. Although the 
dislocation velocities considered by Labusch were of 
the order of 100 ms -1, i.e. unrealistically high com- 
pared with the actual velocities which are usually of 
the order of a few micrometres per second, the model 
showed some of the features already embodied in the 
slip-nucleation theory [-20] of SSH; in particular, the 
energy profile along the dislocation path (Fig. 7) in- 
dicated that several obstacles were involved in a single 
event of activation and that with increasing temper- 
ature activation areas became progressively larger. 
However, in its present stage of evolution, Labusch's 
model [24] does not facilitate the making of detailed 
comparisons with experiment, although, as with 
Nabarro's work [22], it points clearly to the need to 
search for other variants of rate-determining pro- 
cesses; the glide through dispersions of random 
barriers, although illuminating, did not yield a 
quantifiable formulation of SSH. 

3, Sl ip-nucleat ion at barriers of aligned 
solute atoms 

A model of a different type, based on nucleation, 
rather than on propagation of slip, as the rate-deter- 
mining process in yielding, was proposed in 1968 by 
Feltham [8] to account for the temperature and con- 
centration dependences of the CRSS of fairly concen- 
trated solid solutions, i.e. in which the mean spacing of 
solute atoms on a dislocation was assumed to be only 
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Figure 7 The energy profile along the path of a dislocation in a field of weak obstacles for a sequence of stable positions of minimum energy 
with saddle-point configurations between them which have to be overcome by thermal activation [24]. 
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a few interatomic spacings. Thus collective break- 
away, rather than either an Orowan bypass mechan- 
ism, or a Friedel-type unpinning at a single point, was 
considered. Although initially meant for concentrated 
solid solutions of metals with low Peierls potentials 
(i.e. mainly f.c.c.), the functional forms of the nuclea- 
tion model of SSH [8, 1~9] was found to have 
a broader scope, being seemingly applicable to slip 
nucleation in dilute s alloys (with c as low as 
0.01 at %) [e.g. 26-28] as well as in hexagonal close 
packed (h.c.p.e.g. [33, 40, 68]) and body-centred cubic 
(b.c.c.e.g. [38, 43, 44, 67]) crystals with solute concen- 
tration ranging from 0.005 to 45a t%.  It leads to 
dependencies between the variables (CRSS or yield 
stress, activation volume, solute concentration and 
temperature) which, being in closed form, are readily 
verifiable. We shall consider them briefly. 

3.1. The  basic  m e c h a n i s m  
In the paper already referred to above [8], yielding 
was visualized as occurring as a consequence of the 
breakaway of edge-dislocation segments from short 
rows of closely spaced solute-atom pinning points; 
pinning of screw dislocations was considered too weak 
by comparison to result in effective barriers to glide. If 
these barriers are regarded as being "smeared out" 
over the segment length, rather than localized (Fig. 8), 
the manner of breakaway can be seen to be somewhat 
similar to the "kink-pair mode of escape" of dis- 
locations from a Peierls barrier [80]; however, in view 
of its relatively large length, self-stresses (e.g. 
kink-kink interactions) are ignored. The mean spac- 
ing between neighbouring alloy atoms (denoted by 
circles in Fig. 8) on a dislocation is taken to be 
X "~ b/c 1/2. To facilitate slip under an applied shear 
stress, the maximum displacement nb of a dislocation 
segment of length L(=AB), shown in Fig. 8, must 
suffice to free an arc (ACB) from the short-range stress 
field of the initial pinning points, to extend the length 
L to that of the bulge ACB, and to permit its re- 
pinning after attainment of the saddle-point config- 
uration in the forward movement. 

A simple model of the breakaway of a straight-edge- 
dislocation segment from a row of mutually non- 
interacting solute atoms [81] yields approximately 
ro/31/~ for the mean displacement x (=  lnb)  into the 
saddle configuration (Fig. 9), where r0 is the disloca- 
tion core radius. On taking ro = 3b as a typical value 
[82], the relation �89 ro/31/2 then yields n ~ 4. In 
conformity with this estimate, Feltham [8] estimated 
that, on average, the critical mean height of the arc 
ACB (i.e. �89 in close-packed metals would be about 

o o o o_.2__0 o o o 

Figure 8 Movement of a dislocation segment to a new pinning site 
in a stress assisted, thermally activated process (schematic). Circles 
denote solute atoms [8]. 
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Figure 9 Interaction energy of, and stress on, a dislocation dis- 
placed by x in the slip direction from its initial position (x = 0) with 
respect to a line of solute atoms [81] 

2-3b, i.e. n ~ 4-6; n was not expected to be appreci- 
ably dependent on the solute concentration, c. These 
typical values of n are found in practice, e.g. inthe case 
of f.c.c. (e.g. [26, 30]) and h.c.p. (e.g. [40]) alloys; not 
unexpectedly, a slight concentration dependence 
(n oc c- 1/6) is observed. However, in the case of b.c.c. 
metal crystals with high intrinsic lattice friction (high 
Peierls force) one would expect somewhat smaller 
n-values. This inference is borne out by observations; 
values of 1-2 have been found [44], and will be refer- 
red to later. 

Now, the activation energy W for the passage of the 
dislocation segment AB between consecutive equilib- 
rium positions, i.e. for the formation of the bulge ACB 
(Fig. 8), approximated in [8] by a triangle, is given by 

1,2 L b _ �89 3 L W = Uc ~ -~ + naGbS~, ~ (9) 

where ~: is the CRSS at the temperature, T, at which 
the experiment is carried out, U is the energy exp- 
ended per solute atom in the process of nucleation of 
a bulge of critical mean height �89 (the saddle config- 
uration), i.e. in the initial breakaway of a dislocation 
segment from a group of such aligned pinners, and G is 
the appropriate shear modulus. The saddle point or 
n-value is difficult to determine with precision, be- 
cause the interaction of the segment with solute atoms 
in its passage to the critical configuration has not been 
adequately solved. However, an estimate based on 
a well-known model of Cottrell and Bilby [81] sug- 
gests that typically n ~ 4 [26], as pointed out earlier. 
The terms on the right-hand side of Equation 9 repre- 
sent, from left to right, respectively: (i) the energy 
required for unpinning from the solute atoms close to 
the dislocation segment AB, (ii) the increase in the 
total line energy due to formation of the "triangle" 
ACB from the initial length L(=AB),  and (iii) the 
work done by the applied shear stress in moving the 
dislocation from AB to ACB. 

On denoting the radius of curvature of the arc by 
R then, as z = Gb/2R and 2nbR ~ LZ/4, one obtains 

L/b  = (4Gn/z) 1/2 (t0) 

If the unpinning is to take place at an observable rate 
v then, taking v to be of the order of 0.1-J0s - t  to 
result in plastic deformation at the shear rates ('~') 
usual in tensile tests, the Boltzmann relation for the 

2 5 6 3  



corresponding relaxation times (v - 1 ), determining the 
shear rate, ~, is 

V/Vo = e x p ( -  W/kT) (11) 

with v o a vibrational frequency of the order of 
1011s - 1, and W(z) the stress-reduced barrier height. 
On taking logarithms of both sides, one obtains the 
yield-criterion: 

W(z) = mkT, (m = ln(vo/v) ~ 25 _+ 2.3) (12) 

where rn and its range define the observation window 
[37], i,e. the range of W values participating in the 
process. 

A feature of the computer simulation of Arsenault 
and Cadman [71], particularly instructive in relation 
to the nucleation model, was that, in general, a dis- 
location pinned along its length moved ahead by the 
initial nucleation of a small bulge, facilitated by 
'unzipping' at a few solute atoms along the dislocation 
line, normally to its direction of motion. During and 
after this bulge-out stage of nucleation the side parts 
of the bulge, while moving more or less parallel to the 
dislocation line, also advanced normally, taking the 
dislocation forward a few lattice spacings. The process 
closely resembles the transition of a dislocation seg- 
ment from a "necklace" of pinning points to a similar, 
parallel one through a distance of several Burgers 
vectors, as was visualised in the nucleation model of 
SSH in concentrated alloys (Fig. 8) [18, 19]. Yielding 
is initiated by the thermally activated, stress-assisted 
breakaway of a straight dislocation segment of length 
L(T) from an array of pinning points spaced b/c 1/2 
apart; the concomitant increase in the length of the 
escaping segment facilitates the nucleation of a bulge, 
somewhat akin to a kink pair, with a mean displace- 
ment of about �89 At the CRSS, n attains the critical 
value referred to, i.e. on reaching the saddle configura- 
tion. Further unzipping at the corners of the bulge, 
accompanied by repinning at its leading edge, com- 
pletes the advance of the dislocation to the new equi- 
librium position. 

It is worthy of note that a characteristic feature of 
the nucleation model is the inclusion in the energy 
W(~) of a contribution, allowing for the increase in 
length of the segment in the course of nucleation, in 
addition to the work expended in the unpinning per se. 
The unzipping at the end points, in the post-nuclea- 
tion growth stage of the area of slip, would require a 
low activation energy compared with W(% and would 
not be rate determining in the glide process. The work 
done by the dislocation due to encounters with un- 
aligned solute atoms in the transition between two 
equilibrium positions is not specifically allowed for in 
the model, but its effect would be expected to appear as 
contributions to the observed variability of n and U 
with solute content. 

3.2. Tempera tu re  d e p e n d e n c e  of the  CRSS 
In addition to the specific solute considered, the alloy 
crystal will usually contain other obstacles to disloca- 
tion motion; e.g. Peierls barriers, solid and gaseous 
impurities, dislocation networks, possibly also point 
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Figure 10 Dependence of the CRSS of Mg-Zn single crystals on 
alloy content at various temperatures; experimental values, taken 
from [83], are shown as points. Datra for 0K were obtained by 
extrapolation. The equivalent concentration, co =0 .04a t%Zn ,  
accounts for the residual stress of the unalloyed Mg crystal [68]. 

defects in above-equilibrium-concentration and, in 
particular, conservatively and non-conservatively 
moving jogs of various lengths and mobilities. The 
resistance of the alloy crystal to plastic deformation 
will thereby be enhanced, exceeding the level expected 
from pinning at the solute atoms only. An effective 
concentration c* = c + Co has then to be used [9, 363 
in Equation 9 instead of the nominal solute concentra- 
tion c; here the "equivalent" concentration, co, allows 
semi-empirically for the presence in the crystal of such 
drag and pinning barriers. Numerically, Co is taken to 
be equal to the common intercept on the negative 
c-axis made by the extrapolated Uc isotherms (Fig. 
10). A finite yield stress for c = 0, i.e. the resistance of 
the unalloyed crystal to plastic flow, is thus taken into 
account. This semi-empirical correction has been 
found to be of substantial importance in theoretical 
interpretations of SSH particularly in rather dilute 
alloys [26, 28, 33, 683, where co is not always negligible 
compared with c. 

The magnitude of co depends on the substructure of 
the alloy; it is influenced by annealing the crystal and 
by subjecting the latter to plastic strain. If the crystals 
were plastically deformed, the z/c isotherms (Fi~. 10) 
would be displaced upwards along the stress axis, 
resulting in a larger common intercept on the negative 
c-axis, as if the solute content had been increased. 

Reverting to the nucleation model, the relation for 
the CRSS, which is now written as z(c*, T), obtained 
by Feltham from Equations 9-12, then takes the form 
[8,93 

"CoO 
v -= [ I  + (1 + 0)1/2] 2 (13) 

where Zo(=-4U(c*)l/Z/nb 3) is the CRSS as T ~ OK, 
and O = 4n 2 Gb 3 U ( c * ) l / Z / ( m k T )  2. W e  note that the 
value of U, referring to the displacement of the seg- 
ment considered only up to the saddle position, 
should be substantially less than the classical binding 
energy between a solute atom and an undissociated 
edge dislocation; for U represents work done as the 



segment pulls away from its pinned position to the 
saddle point (,,~ 14b), while the binding energy presup- 
poses movement to "infinity". It is regarded as an 
expectation value; the dispersion originates from 
short-range modulations of the internal stress field, 
variations in the edge/screw ratios of the activated 
dislocation segments, dissociation of the dislocations 
into partials, as well as from incomplete contacts be- 
tween pinners and dislocation segments, arising from 
their limited flexibility. 

The energy-of-formation of the bulge (Equation 9, 
Fig. 8) to which W('c) here relates, may also be ex- 
pressed by the relation [20]: 

W = W o ( x  - 1 / 2  - x 1/2) (14) 

where Wo = n(U(c*) v2 Gb3) 1/z and x = z/%. Then, 
with the transformation x = e x p ( - 2 r  one obtains 
from Equations 12 and 14: W =  2W0sinh~, and for 
sufficiently low temperatures, to which the model 

applies, (i.e. with x -+ 1, sinh qb ~ r 

W ~ 2Wod ? = Woln(-co/,c ) (15) 

Equation 15, in conjunction with Equation 12, yields 
ln('Co/'0 = mkT/Wo and finally 

"c = "Co exp ( -  mk T/ Wo ) (16) 

a relation generally found applicable in practice 
[31, 41]. At any given temperature, the CRSS, 
"~(c*, T), thus depends on % and Wo; U and c* appear 
in both parameters only in association, as U(c*) 1/2, 
the effective-binding-energy per unit length of disloca- 
tion for transitions from the initial to the saddle-point 
states. 

Equation 16 implies that the slope dln 'c /dT be 
constant for a given alloy (Fig. 11), and equal to 
- m k / W o .  The experimental value of (d In ~:)/dT, thus 

facilitates the determination of Wo, while the point .at 
which the extrapolated (ln'c)/T line intersects, the 
stress axis (T ---, OK), denotes the magnitude of %. 

(3_ 
.% 

50 

O%Zn 

10 

5 ~ -  1 ~ 1  I I I _ _ l  J 
0 100 200 300 LO( 
(a) T (K) 

o.- 
.% 

100 

10 

--.•/o Mg 

2 2 ~  3.8 

7.0 
1.6 

- -  ~ 0 . 6  

- 1 [ 
50 100 

(bJ T (K) 

150 

L Mg-Cd 

d 

/ 

10 

G 
.% 
F, 

0.02 

1000 

I _ L I I 
100 200 300 100 200 

(c) 7" (K) 7 (K) 

I I I 

Z 
1 0 0  - 

i 20 
0 
(d) 

8,3 %Si 

' ~ 7 . 7  o 

5.0 % Si 

10.6 ~ 

I 

30O 

Figure 11 Semi-logarithmic representation of the temperature dependence of the CRSS of (a) Cu-Zn [59], (b) AI-Mg [60] and 
(c) Mg Cd [68] single crystals, as well as that of the tensile yield stress of (d) some single crystals of Fe-based alloys [67]. Data points in (a-d) 
were taken from [84-87], respectively. 

2565 



Knowing %, Wo and c*, n and U can be evaluated by 
means of the relations [26, 28] 

n 3 = ( W ~ / % ) [ 4 G / ( G b 3 )  z]  

and 

which are 
and 14. 

(17~ 

g = Wg/(Gb3n2(c*)  1/2) (18) 

readily obtainable from Equations 13 

3.3. Low-temperature a n o m a l i e s  
Reverting to Equation 16, one finds that the CRSS of 
a solid solution would be expected to increase mono- 
tonically with decreasing temperature. This is ob- 
served; however, deviations from this behaviour are 
frequently found (e.g. [25-27]) below a certain temper- 
aturel To (see, e.g., Fig. 12), specific to the alloy. 
Attempts to account for the anomalies in terms of 
quantum-mechanical tunnelling and inertial effects, 
reviewed by Fettham [48], have not lead to convinc- 
ing interpretations of the observed behaviour. It seems 
possible that the origin of the anomaly lies in the 
deformation-induced enhancement of local stresses, to 
levels above the applied stress, at barriers to the move- 
ment of dislocations at temperatures sufficiently tow 
to enable one to neglect structural changes induced by 
thermal recovery [37, 5 I]. In close-packed metals the 
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Figure 12 The temperature dependence of the compressive yield 
stress, o( = 3T), of polycrystalline copper and brasses of 130 pm 
grain size, containing up to l at%Zn. The results comply 
with Equations t6 and I9; values of various parameters 
used are Gb ~ = 4.6 eV, G = 4.5 • 104 MPa, n = no(e*/c) -~ U = 
Uo(c*/co)-ot9; with Co = 0.04at%, no = 7, Uo = 44meV and 
To = 50 K [26]. 
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Figure 13 (a) Mutual attraction between two arms of the hairpin in 
a glide dislocation, leading to (b) an athermal, Orowan, pinch-off; 
a jogged loop is left around the forest dislocation. Vacancies form at 
the cusp (jog) of the remaining part of the hairpin. 
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effect may arise as a consequence of self-stresses of 
disiocations [37, 88], e.g. due to mutual attraction 
between two arms of the hairpin in pinch-off config- 
urations at strong obstacles, say forest dislocations 
(Fig. 13). The applied stress appearing in the kinetic 
relations of deformation (e.g. ~ in Equation 16) has 
then to be multiplied by a stress-concentration factor 
f ( T )  for T <~ To, which for hairpin configurations is 
estimated to tie between one and four, increasing with 
decreasing temperature [37]. For T >  To one sets 
f ( T )  = 1. 

In the case of solid solutions, the arms of the dis- 
locations forming the hairpin, which are of opposite 
signs, are now impeded in their mutual approach by 
pinning due to the dispersed solute atoms (Fig. t4); the 
attractive interaction between the arms is conse- 
quently tess than that expected with pure metals. This 
leads to a reduction in the value o f f ( T )  compared 
with that expected for pure metals. The evidence ob- 
tained, e.g. by Feltham and Kauser [26] in the case of 
dilute brasses (c = 0.03 t at % Zn), lends some sup- 
port to this proposal; the stress-concentration factor 
f ( T ) ,  of the empirical form 

f ( T )  = exp( t - -~-~o) ,  ( T < . T o )  (19) 

with To = 50 K, accounted for the observations rather 
well for all solute concentrations (Fig. 12), the lower 
and upper limits o f f ( T )  were 1 and 2.7, respectively. 
Evidence of such concentration-dependent reductions 
in the upper limit o f f ( T )  have also been obtained by 
Butt and coworkers in the  case of Cu-Zn (c = 
12-35 at % Zn) [41], Cu-Mn (0.11-7,6 at % Mn) [89], 
Cu-AI(0.5 14 at % A1) [27, 90], Cu-Ge (0.66- 
2.95 at % Ge) [70] and AI-Mg (0.6-9 at % Mg) 
[47, 61]. 

However, the self-stress of dislocations may not 
necessarily be the only source of the deformation- 
induced enhancement of local stresses at temperatures 
sufficiently low to reduce thermal recovery to compar- 
atively low levels; it could, for example, also be a con- 
sequence of structural changes resulting from recovery 
[51]; thus, below a certain temperature, To, thermally 
activated recovery processes (facilitated, for example, 
by cross-slip, glide on slip planes parallel or inclined to 
the most active one, etc) become increasingly inhib- 
ited, leading to a concentration of deformation into 
a few favoured, narrow bands. The internal stresses, 
for example at unrelaxed pile-ups of dislocations, 
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Fig3~re 14 Hairpin configuration of a glide dislocation in the slip 
plane of a solid solution crystal: (O) solute atoms, (0) forest dis- 
location. The bulge nucleation occurs at the arms. A loop is left 
around the forest dislocation, and a jog on the glide dislocation. 



would therefore exceed the applied stress in locations 
where thermally activated processes are most likely to 
occur. A stress-concentration factor f ( T )  has then to 
be used in equations describing the kinetics of the 
deformation. This view finds some support in obser- 
vations of mechanical twinning at low temperatures, 
and in the occurrence of serrated cracks at large 
strains near grain boundaries, i.e at points of rather 
high stress [913. The existence of stress gradients par- 
ticularly at grain boundaries, and their effect on the 
slip behaviour of alpha-brass polycrystals, investig- 
ated by Hashimoto and Margolin [56], also suggests 
kindred sources of stress concentrations. Again in 
a recent paper on computer modelling of the dynamics 
of spatial dislocation assemblies, Volyntsev [57] 
shows that where dislocation cell-walls are crossed by 
slip-bands significant changes take place in the dislo- 
cation density, and internal stress concentrations at- 
tain. a maximum of about four times the level of the 
applied stress. Dislocation leakage, i.e. local yielding, 
occurs at such locations. 

A different form of the stress-concentration factor 
f ( T )  from that given by Equation 19 may sometimes 
be suitable. Thus the anomaly observed with Cu-Mn 
single crystals (Fig. 15) has been found to be well 
encompassed by the stress-concentration factor f (T) 
of the form [89] 

f ( T )  = (T' + r o ) / ( r '  + T) (20) 

where T' = constant, T~< To 4 T' and f ( T )  = 1 at 
T>_ To and f ( T ) - - *  1 + ( T o / T ' )  as T--*0K.  An 
interpretation of the dependence of the shapes of the 
low-T part of the t I T  curves on f ( T )  in terms of 
self-stress of dislocations held up at barriers is sugges- 
ted in [37]. In h.c.p, metals, e.g. c~-Ti, Mg, Zn, Co and 
Be [92-973, the anomaly in the temperature depend- 
ence of CRSS for difficult slip systems, i.e. with rela- 
tively high Peierls stresses, occurs at rather high 
temperatures, e.g. 170 450K for prismatic slip in Be 
single crystals [973; as a consequence again, it seems, 
of the evolution of high local stresses in the course of 
deformation, but a definitive model is still lacking. 

3.4. Tempera tu re  dependence  of  the 
ac t i va t i on  v o l u m e  

From Equation 14 one has for the activation volume, 
v, defined by 

v = ( - ~ W / ~ t ) r  (21) 

the relation [193 

v = Vo(X l/2 + x -* / z ) /2x  (22) 

where vo =(1/4)banz(Gb3/U(c*)l /2)  1/2 and, as be- 
fore, x = t /%,  to = 4U(c*)(1/Z)/nb 3. With the low- 
temperature approximation for x given by 
Equation 16, one obtains from Equations 15 and 21 
the simple expression [27] 

v = voexp(mkT/Wo)  (23) 

This, together with Equation 16, and W o as given in 
Equation 14, then yields the hyperbolic relation 

t v = % v o  = Wo (24) 
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Figure 15 The temperature dependence of the CRSS of Cu-Mn 
single crystals. The data points are described by Equations 16 and 
20; the arrows indicate the critical temperature, To, at which the 
anomaly sets in [89]. 

Experimentally, the strain-rate sensitivity of the 
CRSS, defined by s = T -l(~z/~ln~,)r ,  rather than 
v (Equation 21), is determined e.g. by strain-rate cycl- 
ing experiments [25,78]; a parameter vd, with the 
dimensions of volume, is then evaluated using the 
relation 

Vd = kT(~ln~/Ot)r  

(25) 

where }, is the shear rate of the crystal, expressed by 
[19] 

? = % e x p ( -  W/kT)  (26) 
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The pre-exponential factor % is usually of the order of 
107s -1 (see e.g. [2,19]), and taking ) = 10 -4-+1 s -1 
as a typical shear rate, one finds from Equation 26 

W(z) = mkr,  (rn = ln(%/~,) ~ 25 • 2.3) (27) 

which is akin to Equation 12. Then, provided the 
stress dependence of ?o is negligible compared with 
that of e x p ( -  W/kT),  one has from Equation 26 

kT(~ln?/~z)  = ( -~W/~T)  - v (28) 

and, given that proviso, one can write 

"U = V d (29) 

Although this is not invariably correct, we shall as- 
sume (with due caution) the validity of Equation 29, 
to facilitate comparison of experimental data 
(Equation 25) with the theoretical formalism (Equa- 
tions 22-24). This assumption seems to be justified by 
the f~ct that the agreement between the theoretical 
curve obtained by means of Equation 22 and the data 
points referring to vd for a C ~ 3 0 a t  % Z n  single 
crystal (Fig. 16) is reasonable. 

However, the activation volumes given by 
Equations 21 and 25 will not be equal if pronounced 
structural changes occur during strain-rate cycling. 
Thus Fig. 17 shows that, while the agreement between 
the experimental U T  data-points appertaining to 
some copper-based alloys, obtained by Basinski et al. 
[78], and the theoretical curves (Equations 16 and 20) 
is rather good over the entire range of temperatures, 
there are pronounced discrepancies in the case of the 
temperature dependence of the activation volume at 
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Figure 16 The temperature dependence of the CRSS and of the 
activation volume for monocrystalline 70/30 brass. Points represent 
measurements of Traub et al. [74]; curves drawn through the data 
points agree with Equations 13 and 22, in which the values of 
various parameters used were: % = 35 MPa, Vo = 153b 3, 
c ~ 3 0 a t % ,  G = 4 . 5 x l 0 4 M P a ,  Gba=4.6eV,  U = 7 m e V  and 
n = 4.2; e o was ignored, being negligible compared with c [58]. 
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Figure 17 The temperature dependence of(a) the CRSS and (b) the 
activation volume, for some copper-based alloys. The symbols 
denote the data obtained by Basinski et al. [78]: ( 0 )  Cu~0.5 at % 
Al~0.1at% Ag, (~ )  Cu 1.0at% AI, (&) Cu-0 .5a t% A1, 
(�9 Cu-0.1 at % Ag, ( V ) Cu~).5 at % Si. The full curves are theoret- 
ical; the points in (b) denote values of va (Equation 25) while the 
curves refer to v (Equation 21). A stress-concentration factor f ( T )  
(Equation 20) was used in Equations 16 and 23 to encompass the 
anomalous behaviour below 70 K. Discrepancies in (b) seem to arise 
from differences between vd (dynamic) and v (static); this is parti- 
cularly pronounced in the region of the low-temperature anomaly 
[273. 

low temperatures ( T <  70K). These occurred, it 
seems, mainly because the points of Basinski et al. [78] 
were obtained by strain-rate cycling, thus representing 
va (Equation 25), while the theoretical curves, v, were 
obtained by means of Equation 23. 

3.5. Power laws relating stress, act ivat ion 
volume and solute concentrat ion 

In the nucleation model of SSH, the concentration 
dependence of the CRSS depends somewhat on the 



temperature [9]. Thus according to Equation 13, as 
~ %, i.e. T --* OK, one has r oc (c*) 1/2. However, 

for temperatures high enough to lead to 0-values signi- 
ficantly less than unity, the denominator in 
Equation 13 is essentially constant and assuming that 
neither n nor U vary significantly with c* over a short 
range of temperatures close to 0 K, one has approxim- 
ately, ~ oc 0%, both % and 0 being proportional to 
(c*) 1/2 (Equation 13) so that the CRSS becomes lin- 
early dependent on the concentration. Thus, if one 
writes 

,~(T) oc (c*) r (3o) 

the r-values would be expected to lie within the limits 
of 1/2 and 1; the larger values occurring at the higher 
temperatures (Fig. 18). 

Similarly, the concentration dependence of the ac- 
tivation volume is also a function of temperature [38], 
as is apparent from Equation 22 if written in the form 

v = �89 + (~0/~)] (31) 

As T ~ 0 K, it yields v --, v0 oc (c*)-1/4; while for 
relatively high temperatures, when z0/r >> 1 so that 
0 --* 0, one has ~/~o oc 0 oc (c*) w2 (Equation. 13), 

IU ('C/~7 I - 3 / 2  so that v .~ �89 = ~ o ~ ,  oJ 
(c , ) -U4(c , ) -3 /4oc  @,)-1. These relations may be 
encompassed by writing [38] 

v(T)  oc (c*) -o, (1 <~ q <~ 1) (32) 

Experimental results (e.g. Fig. 19) sustain these 
inferences. We note however that close to their re- 
spective upper limits, i.e. at high temperatures, the 
values of the exponents r and q may not be of rel- 
evance here, for then diffusional processes participate 
in the plastic deformation and, hence, Equations 13 
and 31 are no longer applicable. 

Assuming the validity of Equation 28, an alternative 
expression for activation volume (Equation 22), 
obtainable from Equation 13 in conjunction with 
Equation 25, in terms of 0 is [19] 

V --~ VO[6 4- (1 4- (32)1/212(1 4- 62)  1/2 , 

(6 = 0 -1/2) (33) 
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1 

For  an alloy at a given temperature Equations 13 and 
33 yield 

zv = %v0(1 + ~2)1/2 (34) 

As 6 = 0 - t /2  oc T, the product  zv for a given alloy 
therefore increases somewhat  with rising temperature�9 
Excepting the anomalous  hump below about  7 0 K  
(Fig. 20) due to the occurrence of pronounced  struc- 
tural changes during strain-rate cycling, the variation 
of (zv)-values with temperature in the case of 
Cu-1 at % A1 alloy single crystal is in accord with this 
expectation. However,  at rather low temperatures, i.e. 
when ~i2<<1, the expression simplifies, as the 
bracketed term may then be omitted. An alternative 
form for the product  of r and v, obtainable from 
Equat ion 22, in terms of x ( =  Z/to) is [-39] 

T,U = l g O U o [ X I / 2  "I" X -1/2] (35) 

Hence, as T --* 0 K, i.e. x ~ 1, the hyperbolic relation 
~v = % Vo, is again obtained (Equation 24), and sub- 
stantiated by experiment in Fig. 21. 

3.6. Stress equivalence 
The term stress equivalence refers to a phenomenon  
first observed by Basinski et al. [78]. They found that 
if two solid solution crystals with differing solute con- 
tents but in the same solvent, in this case copper  or 
silver, had the same CRSS at any temperature, here in 
the range 4 -380K,  then their C R S S / T  curves were 
coincident, (see e.g. Fig. 17a). Similarly va (Equation 
25), obtained by strain-rate cycling, was found to be 
uniquely related to the CRSS, irrespective of the type 
of alloying element and its concentrat ion (Fig. 22). 
Also, for the solid solutions based either on copper  or  
silver, the difference between the CRSS at 78 K and 
that at 298 K, expressed as a function of the CRSS at 
78 K, was independent of alloy type and concentrat ion 
c, i.e. a single c o m m o n  curve was obtained for all alloy 
concentrations,  and solute types in a correlation of 
z(78)-~(298) with z(78). A corresponding result was 
also found by Butt et aI. [40] to apply to other f.c.c., 
h.c.p, and b.c.c, alloys [19, 69, 76, 78, 84, 100-112] 
with solute concentrat ions ranging from 5 x 10 .3  to 
30 at % (Fig. 23). 

Concerning the superimposit ion of the z / T  curves 
of solid solutions with the same base but different 

- -  I I I I I I I I I  I 
10 

(MPo) 

I I I 

Figure 21 The dependence of activation volume va (Equation 25) on 
CRSS of Mg-Li alloy single crystals. The gradient (d In vd)/(d In z)i 
of the line drawn through the data points, taken from [107], at 
a given temperature is 1, as required by Equation 24 [68]: 
(O) 4k, (D) 78K, (A) 198K. 
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Figure 22 The dependence of the activation volume, va on the 
(concentration dependent) CRSS and on the temperature for 
( A ) Cu AI, ( V ) Cu-Ag and ([]) Cu Ni alloys. The curves represent 
the experimental data of Basinski et al. [78]; the symbols denote 
theoretical values. The latter were derived by means of Equation 23, 
using values of % and W0, determined from the experimental z /T  
data by means of Equation 16. Points A N refer to copper single 
crystals, containing 0.01 l lat% AI, points O-Q refer to 
0.05-0.19at % Ag and point R to 5at% Ni [27]. 

solutes, i.e. stress equivalence, Equat ion 16 shows that 
for stress-equivalence of alloys 1, 2, 3 . . . ,  one must  
have 

(%)1 = (%)2 = (%)3 . . . .  (36) 
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and 

( W o h  = (Wo)2 = (W0)~ = " ' "  

or, in terms of n and U [26] 

n 1 = 1l 2 = t'/3 =- �9 . . 

(U(c*)1/2)1 = (U(c* )1 /2 )2  = (U(c*)1/2)3 

(37) 

(38) 

(39) 

The values of n and U(c*) ~/2 for several copper- and 
silver-based alloy single crystals given in [27], confirm 
these criteria. Also, Equations 36 and 37, in conjunc- 
tion with the relation to Vo = Wo (Equation 24), sug- 
gest that solid solutions of different solutes in a given 
solvent metal, which exhibit the same z /T  behaviour, 
will also satisfy the condition 

(Vo)1 = (Vo)2 = (Vo)3 = " ' "  (40) 

and hence such solid solutions would be expected to 
have a common v/T curve (Equation 23) as well. This 
inference is borne out by the va/T data (Fig. 17), ob- 
tained by Basinski et al. [78] with copper-based 
alloys. Note that deviations from the theoretical 
curves in Fig. 17b appear to be due to differences 
between va (Equation 25), as determined by strain- 
rate cycling experiments [78], and v (Equation 21). 
Also, it should be remembered that in the case of 
stress-equivalent solid solutions in which the CRSS/T 
anomaly occurs, the condition [26] 

A ( T )  = f 2 ( r )  = f3(T) . . . .  (41) 

has to be added to Equation 36 and 37. Deviations 
from stress equivalence at low temperatures, suggest- 
ing failure of this criterion, have been observed with 
copper single crystals containing either manganese or 
germanium in solid solution [25]. 

Similarly, a relation for the stress equivalence of the 
difference in CRSS between two temperatures 7"1 and 
T2 (T2 > T1), derived from Equation 13, obtained on 
writing 0 = (A/T) 2 for a specific alloy, and readily 
amenable to experimental study, is [-19] 

t ( T 1 ) - z ( T 2 )  = l _ [ T I  + (T~ + A2)1/2] 2, 
~(~1)  ;r2 + (T~ + A2)  ~/2 

T~ < T2 (42) 

For values of T, either rather smaller or larger than 
A (=2Wo/mk), the ratio [z(T1) - ~(Tz)]/t(T1) may 
readily be seen to be but little dependent on the alloy 
concentration. An alternative, simpler, expression for 
Equation 42 can be obtained on using the low-temper- 
ature approximation given by Equation 16, a proced- 
ure generally justified within the domain of validity of 
the nucleation model. One then has [41]: 

[ mk = _ ] r ( T ~ ) -  t(T2) = 1 - exp - T1) 
�9 ( r ,  ) Wo (T2 

(43) 

and as, for a given set of binary solid solutions Wo is 
not significantly dependent on c, the right-hand side of 
Equation 43 is constant for a given set of limit temper- 
atures (T1, T2), so that one would expect 

81n[t(T1) - t(T2) ] 

0 in r(T1 ) 

for all solid solutions, as seems to be the case (Fig. 23). 
Variations of Wo from one alloy system to another 
seem to be sufficiently small to result in the confine- 
ment of the experimentally determined points into 
a relatively narrow band around the line of unit slope 
in the double-logarithmic presentation shown in 
Fig. 23. A similar correlation can also be shown to 
hold for v(T2) - v(T1) and v(T1) in accordance with 
the expression [27] 

v ( T z ) -  v(Tt) = v ( T t )  e x p I ~ o ( T 2 - T 1 ) I -  l (44) 

Further, for a given change in the test temperature 
AT = T2 - T1 one can, by means of Equations 43 and 
44, readily find the expression for the product of the 
accompanying changes in the CRSS, At = ~ (Tx) -  
z(T2) and the associated activation volume, Av = 
v(T2) - v(T1) [27]: 

(Ar)(Av) = 2Wo [cosh(mkAT/Wo) - 13 (45) 

Neglecting the weak c-dependence of Wo, the right- 
hand side of Equation 45 is a constant for a given AT. 
One then obtains for a given set of binary solid 
solutions: 

81nA~ _ 81n_Av 

0C AT 0C AT 

and hence 8 In AU�9 In Av = - 1. Fig. 24 refers to the 
dependence of Ava=va(T2)-va(T1)  on A t =  

( T1 ) - z (T2), for copper- and silver-based solid solu- 
tions ((a) and (b), respectively) with T2 = 298 K and 
T~ = 78 K. The experimental values (strictly va not v) 
of Basinski et al. [78] for copper-based alloys have 
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0.01 to 11 at % in the case of the former, and from 0.01 to 20 at % 
for the latter series. In (a) the symbols denote the experimental 
values (va) of Basinski et al. [78]; as the theoretical values obtained 
by the use of Equations 43 and 45 are close to the experimental 
values, they have been omitted. In (b) the filled symbols (A, @, B) 
represent experimental data (vd) taken from [78]; the open symbols 
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tion 21) arising from the occurrence of pronounced 
structural changes during strain-rate cycling, and due 
to possible diffusional effects operative at room tem- 
perature, the slope of the line drawn through the 
points in each case is equal to - 1 ,  as required by 
Equation 45. Similarly the slope of the curve drawn 
through the data points appertaining to copper-based 
alloys in Fig. 24a is also close to the theoretical 
value of - 1. 

4.  M e t a l s  w i t h  a h i g h  P e i e r l s  p o t e n t i a l  
A close analogy exists between the modes of the es- 
cape of a dislocation segment from a Peierls barrier, 
i.e. by kink-pair nucleation [80], and the breakaway 
from a row of closely spaced solute atoms [8]. The 
temperature dependence of the CRSS of b.c.c, metals, 
which have a high Peierls potential for screw dis- 
locations compared with f.c.c, metals, is more pro- 
nounced as a consequence than that of f.c.c, metals, 
but it is akin to that of relatively concentrated f.c.c. 
solid solutions. As kink-pair formation similar to the 
nucleation of a bulge in solid solutions is also con- 
sidered to facilitate the passage of dislocations over 
a Peierls barrier, i.e. yielding in b.c.c, metals, a relation 
of the same form as Equation 13 or 16 could also be 
expected to account for the temperature dependence 
of the CRSS of pure b.c.c, metals. In this case U would 
be interpreted as the Peierls energy per interatomic 
spacing along the screw dislocation, c* would be 
equated to unity [80], and n would be anticipated to 
lie in the range 1 2 [43, 44]. This hypothesis has in 
fact been found to account quite well for observations 
[43 45, 67], as is exemplified by the temperature de- 
pendence of the CRSS and of the activation volume va 
(Equation 25) in the case of several b.c.c, metals 
[46,87, 113-115], shown in Figs 25 and 26. These 
results provide further, indirect, support for the nu- 
cleation model. 

A feature of particular interest arises from the near 
equality of the lattice spacings and of the valencies 
respectively of Ta and Nb, as a result of which one 
may expect solid solution hardening in a N b -Ta  alloy 
system to be negligible. The coincident values 
(denoted by points) for all solute concentration# and 
pure metals in Figs 25 and 26 show that these alloys 
behave as the pure solvent crystal ( c* =  1) with 
respect to the temperature and concentration depend- 
ences of both the CRSS and the activation volume, va 
(Equation 25). 

been denoted by symbols in Fig. 24a. Those derived by 
means of Equations 43 and 45, being close to the 
experimental values, were omitted for clarity. Sim- 
ilarly, the full symbols in Fig. 24b denote the data 
(strictly Vd not v) of Basinski et al. [78] for silver- 
based alloys; the open symbols were determined by 
means of Equations 43 and 44. Although the points 
denoting theoretical values of Av in Fig. 24b are some- 
what lower than the experimental ones, most probably 
due to the differences in va (Equation 25) and v (Equa- 

5.  S u p e r p o s i t i o n  o f  s o l i d - s o l u t i o n  
h a r d e n i n g  a n d  w o r k  h a r d e n i n g  

The effect of work hardening on the solution-strength- 
ening mechanism has not yet been extensively ex- 
plored [39, 116-119]. In 1970 Suzuki [116] studied 
the problem; he introduced dislocations into copper- 
alloy single crystals, which had rather low grown-in 
dislocation densities, by twisting them. Tensile speci- 
mens of a certain orientation were cut from the twisted 
crystals so that the screws introduced into them acted 
as forest dislocations. He found that below a certain 
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Figure 25 The temperature dependence of the CRSS of atypical 
(a) Nb and Nb Ta [114], and (b) Ta and Ta Nb [113] single 
crystals. The theoretical curves drawn through the data points 
comply with Equation 13 with c* = 1 [44]. 

critical density of forest dislocations the yield stresses 
of single crystals of Cu-0 .25a t% Ni and 
Cu 0 .17at% A1 at 77 and 300K were determined 
primarily by the solute atoms, while, above that criti- 
cal density, it was determined by the forest, i.e. it was 
proportional to the square root of the forest density. 

Basinski [117] later carried out strain-rate cycling 
experiments, at room temperature, with single crystals 
of copper and of a copper alloy containing 0.05 at % 
A1. The change in the flow stress in shear, Aq accom- 
panying a given strain-rate change was determined in 
each case at several stress levels, i.e. going along the 
stress-strain curve. He observed that AT was depend- 
ent on solute content at low stresses, i.e. in the early 
stage of plastic deformation, while at high stresses 
(shear strain > 45%), the Ar/~ curve for Cu-0.05 at % 
A1 coincided with that for copper. Measurements 
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Figure 26 The temperature dependence of the activation volume, 
va, for the metals and alloys referred to in Fig. 25. The theoretical 
curves encompassing the data points comply with Equation 22, with 
c* = 1 [44]. 

made by Wielke et aI. [118], between 4 and 50K, on 
cadmium single crystals alloyed with 0.01, 0.03, 0.08, 
0.28 and 0.7 at % Zn, corroborated Basinski's obser- 
vations. They found that the activation volume 
V d -  k T [ 8 1 n ~ / ~ z ] r  decreased with increasing flow 
stress, and that the initial dependence' of va on the 
alloy concentration c disappeared at shear strains 
greater than about 40%. 

We note that the Va/t relations obtained by 
Krasova et al. [119] at room temperature with single 
crystals of Cu-Si solid solutions containing 0.07, 0.23 
and 3.26 at % Si coincided, falling on a single smooth 
curve over the entire flow stress range studied 
(4-24 MPa). Here too, the independence of v d on sol- 
ute concentration seems to be a consequence of the 
rather large strains at which the activation volumes 
were determined; work-hardening (WH) rather than 
SSH then determined the flow stress. 

Recently, Butt and Feltham [39] obtained correla- 
tions, akin to those of Basinski [117] and of Wielke 
et al. [118] for single crystals, but using polycrys~[alline 
copper and brasses (10-30at %Zn)  at 77, 200 and 
290K at compressive stresses, cy, ranging from 30 to 
300 MPa, with a maximum compressive strain, s, of 
14%. They found the magnitude of the activation 
volume 

v~ = k T ( ~ l n ~ / 6 c y ) r  

appertaining to a given stress level and temperature 
( k = 4 x l 0 - S s - l ~ - ~ 4 x l 0 - 4 s  -1) to depend on the 
zinc concentration in the stress range corresponding 
to compressive strains of less than about 4%; at 
higher strains it was found to be independent of the 
solute content. 

Also, in a representation of v~, cy versus cy, Butt and 
Feltham [39] observed that for brasses and for cop- 
per, the values of racy coincided at high stresses, cor- 
responding to compressive strains of more than 4%, 
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Plastic strain 

Figure 28 Superposition of solid-solution hardening (SSH) and 
work hardening (WH) in a solid solution for a given temperature, 
strain rate and solute concentration (schematic). The effective hard- 
ness for any strain is that represented by the higher-lying of inter- 
secting curves for that value of strain; SSH and WH regions are to 
the left and to the right of the crossover point, respectively. 

while at low stresses they did not (Fig. 27). They 
concluded that alloy atoms are effective obstacles to 
dislocation motion in the initial stage of plastic defor- 
mation, but that beyond certain values of the tensile 
strain, work hardening became rate determining; res- 

2 5 7 4  

istance of the crystals to plastic deformation then 
derived mainly from the forest rather than from the 
alloy atoms, i.e. as indicated schematically in Fig. 28. 

6 .  C o n c l u s i o n s  
1. The nucleation model of SSH [8, 19, 31] explains 

adequately the principal features of the dislocation 
kinetics involved in solid solution hardening of f.c.c., 
h.c.p, and b.c.c, alloy crystals, with solute contents 
down to about 100 p.p.m. 

2. It accounts satisfactorily for the principal ob- 
served features of SSH. These appertain to the temper- 
ature and concentration dependencies of the CRSS 
(Equations 16 and 30) the activation volume 
(Equations 23 and 32) the product of activation vol- 
ume and CRSS (Equations 24 and 34), the stress 
equivalence (Equations 43 and 45), and the role of 
hardness of the unalloyed (base) metal (equivalent 
concentration Co) on SSH. 

3. The anomalies in the mechanical response of 
solid solution crystals observed below about 70 K are 
also consistently accomodated by the model 
(Equations t9 and 20) at temperatures at which ther- 
mal recovery is low. 
Note added in proof: In a recent paper [120] Feltham 
and Kauser derived Equation 20, showing that due to 
the catastrophic breakaway of slip dislocations, in- 
itiated as described in Reference 26, there attained 
"dynamic" velocities, and were consequently subjected 
to appreciable phonon friction. As the latter decreases 
with decreasing temperature, the slip-distance 
lengthens; its magnitude is proportional to " f "  as 
given by Equation 20, which they derive. 
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